Loading...
「ツール」は右上に移動しました。
利用したサーバー: wtserver1
660いいね 44,560 views回再生

Principal Component Analysis (PCA) - THE MATH YOU SHOULD KNOW!

In this video, we are going to see exactly how we can perform dimensionality reduction with a famous Feature Extraction technique - Principal Component Analysis PCA. We’ll get into the math that powers it

REFERENCES
[1] Computing Eigen vectors and Eigen values: https://www.scss.tcd.ie/~dahyotr/CS1B...
[2] Diagonalizing a Matrix: http://mathworld.wolfram.com/MatrixDi...
[3] Step by step diagonalization: https://yutsumura.com/how-to-diagonal...


IMAGE REFERENCES
[1] Gene Expression: https://geneed.nlm.nih.gov/topic_subt...
[2] Graph_plot: https://stats.stackexchange.com/quest...
[3] Eigenvecotrs: https://commons.wikimedia.org/wiki/Fi...

コメント