Loading...
「ツール」は右上に移動しました。
利用したサーバー: wtserver1
10いいね 235 views回再生

Applying Permutation Channel Importance (PCI) to a Remote Sensing Model | Python Tutorial

🚀 Course 🚀
Free: https://adataodyssey.com/permutation-...
Paid: https://adataodyssey.com/courses/xai-...

We dive into Permutation Channel Importance (PCI) and show you how to apply it using Python. We'll work with the Landsat Irish Coastal Segmentation (LICS) Dataset, a resource for advancing deep learning methods in coastal water body segmentation. This dataset includes 100 multispectral test images, each with a binary segmentation mask that classifies pixels as either land or ocean. This is a great start if you are interested in applying Explainable AI methods to remote sensing machine learning models.

🚀 Useful playlists 🚀
XAI for CV:    • XAI for CV  
XAI:    • Explainable AI (XAI)  
SHAP:    • SHAP  
Algorithm fairness:    • Algorithm Fairness  

🚀 Get in touch 🚀
Medium:   / conorosullyds  
Threads: https://www.threads.net/@conorosullyds
Twitter:   / conorosullyds  
Website: https://adataodyssey.com/

🚀 Chapters 🚀
00:00 Introduction
01:43 Landsat Irish Coastal Segmentation (LICS) dataset
02:54 Exploring LICS
09:58 Shuffling a channel
12:53 Applying PCI

コメント